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We present a two-dimensional, quasistatic model of fracture in disordered brittle
materials that contains elements of first-passage percolation, i.e., we use a mini-
mum-energy-consumption criterion for the fracture path. The first-passage
model is employed in conjunction with a “semi-directed” Bernoulli percolation
model, for which we calculate critical properties such as the correlation length
exponent v and the percolation threshold p***. Among other results, our
numerics suggest that v*9i* is exactly 3/2, which lies between the corresponding
known values in the literature for usual and directed Bernoulli percolation. We
also find that the well-known scaling relation between the “wandering” and
energy fluctuation exponents breaks down in the vicinity of the threshold for
semi-directed percolation. For a restricted class of materials, we study the
dependence of the fracture energy (toughness) on the width of the distribution
of the specific fracture energy and find that it is quadratic in the width for small
widths for two different random fields, suggesting that this dependence may be
universal,

KEY WORDS: First-passage percolation; semi-directed percolation; fracture;
brittle materials.

1. INTRODUCTION

An understanding of how materials fail and the prevention of such failures
is one of the most important problems in modern materials research.
Theoretical studies on this subject go back to the classical works of Griffith, ")
Inglis,'® and Irwin.® Phenomenological models of this process abound.% >
Recent progress on this subject has been achieved by using the powerful
theoretical and computational methods of statistical mechanics.® 7 In this
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paper we attempt to study some features of brittle fracture in two dimen-
sions using well-known ideas and methods of percolation theory in com-
bination with numerical simulations. In the course of this study, a number
of questions arose that are of interest and relevance to percolation theory
itself and which we answered using numerical simulations,

Percolation theory serves as a guide for the understanding of a wide
variety of processes in nature such as transport processes in random media,
the spreading of epidemics and fires, statistical tomography, and many
others. As is well known, the simplest “Bernoulli” percolation model can be
formulated as follows. Consider a periodic hypercubic lattice in d-dimen-
sional space whose bonds (sites) are occupied or vacant with probabilities
p or 1 —p, independently of one another. For a given realization of
occupied and vacant bonds (sites), two vertices of the lattice are said to be
connected if they can be joined by a path consisting of occupied bonds
only. Depending on the definition of connectedness, one can define other
percolation models. In this paper we shall deal with short-range percola-
tion models on a two-dimensional regular or random lattice. We recall that
the percolation threshold is a positive number p, <1 (its value depends on
d and the notion of connectedness) such that for p < p,, there are no
infinite connected sets of edges, while for p> p. a unique connected set
(also called the infinite cluster) exists (see refs. 8-10 and references therein.)

The methods and ideas of percolation theory have been used in the
modeling of fracture by many authors. Various lattice percolation methods
have been applied to fracture models in which the medium is viewed as
a set of bonds (springs) with randomly distributed breaking constants
a,.'"1) Under an applied load, the weakest bond breaks first, and then the
stresses are redistributed among all remaining bonds. This procedure is
repeated until all appropriate bonds are broken. One of the main objectives
in such studies'” is the distinction between so-called global-load sharing
models, where the load previously carried by a failed bond is shared
equally by all remaining bonds, and so-called local sharing models in
which the load is shared by the bonds in the immediate vicinity of the
broken bond. Because of the redistribution mechanism, one must solve a
large linear system of Kirchoff equations at each breaking step.

It is well known that fracture can be defined as the creation of new
surfaces (cracks) within a body through application of external forces.®)
The key quantity which determines the crack path under given external
forces is the specific fracture energy y(x), i.e., the energy required for the
creation of (two) new surfaces per unit area. In inhomogeneous materials
such as composites, rocks, concrete and polycrystals, y(x) is a random field
which could be characterized by some spatial probabilistic distribution. In
two dimensions, Jeulin'®? numerically found the trajectory of the path
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between two prescribed points (source and destination) which minimizes
total fracture energy y(x) along the path. This was determined solely from
geodesic propagation, i.e., minimizing the distance with respect to the field
y(x), which is equivalent to using the minimum energy consumption
criterion only. Such a consideration is analogous to the well-known Fermat
principle, in which the light trajectory in a heterogeneous medium is deter-
mined from the minimization of time criterion, i.e., the trajectory of light
is a geodesic with respect to the metric determined by travel time. In
Jeulin’s studies the stored elastic energy field G(x) (or energy release rate)
was ignored; moreover, he did not characterize crack statistics using the
exponents { and y described below.

We consider modeling the failure of brittle materials when the quasi-
static approximation holds. This enables us to use the well-developed results
and ideas of the theory of first-passage percolation, originally invented by
the mathematicians Hammersly and Welsh to model the spread of fluid
through a porous media (see ref. 13 and references therein). Physically, this
means that we restrict ourselves to the case when the applied load is not
very high. (Indeed, it is known that at very high loads the dynamical effects
dominate and the quasi static approximation based on energy considera-
tion does not hold.") We recall that for first-passage percolation pro-
cesses® 13 each edge e of the lattice is assigned a random number T{e)
(time coordinate). For any path (set of connected edges with no self inter-
sections) m 4 5 connecting vertices 4 and B, the time taken to travel from
A to B is defined as > ,., 7T(e). The first-passage time 7(A, B) is then
defined as the minimum travel time over all paths joining A and B. One
can also specify the orientation or direction of the paths between A
and B.®'9 A directed path is one in which each edge is oriented in the
direction of increasing coordinate value, ie., “north-east” orientation.
A semi-directed path is one in which each edge possesses north, east, or
west orientation.

For our fracture model, we consider first-passage percolation in which
energy plays the role of time and the crack paths are semi-directed since
the paths cannot physically reverse themselves. Moreover, we employ the
traditional Bernoulli percolation model but in a semi-directed manner to
study the behavior of the cracks in the vicinity of the critical percolation
threshold p*%* for a certain semi-directed model. To our knowledge, little
is known about the critical properties (e.g., threshold p*¥" and correlation
length exponent v*¥i*) for semi-directed Bernoulli percolation models. Most
notably we have found that v*¥* = 3/2, which our numerics suggest is an
exact analytical value. This lies between the values of v=4/3, for usual
Bernoulli percolation, and v¥*=26/15 (based on numerics), for directed
percolation.
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There are many physical phenomena that require finding the minimum
(over all paths) of the sum of weights of paths connecting two end points,
ie., first-passage percolation. Such problems have been studied intensively
in the statistical physics literature and include, among others, directed
polymers in random media."'® For directed polymers and other interface
problems,"”1® it has been demonstrated that the exponents { and y are
universal and are believed to take the values 2/3 and 1/3. The “wandering”
exponent { characterizes how transverse fluctuations of the path scale with
the distance L between the two endpoints, whereas the exponent y describes
how energy fluctuations scale with L. They also satisfy the scaling relation
x = 2¢{ — 1. However, we emphasize that the values 2/3 and 1/3 and the scaling
relation have been established away from criticality. Thus, an interesting
question is whether the exponents remain universal in the vicinity of the
threshold for the semi-directed percolation model. Here we show that by
adding critical behavior to the semi-directed first-passage model, we can
observe several new effects. In particular, we have found that the scaling
relation y =2{—1 breaks down in the vicinity of the percolation threshold.

The interpretation of semi-directed percolation and the associated
exponents in the context of fracture of brittle solids suggested several inter-
esting studies. In particular, we have determined numerically the depen-
dence of the energy consumed by the fracture path on the width of the
distribution of the random field y(x) (i.e., degree of inhomogeneity of the
material). This dependence is found to be quadratic for small widths and
two different distributions (uniform and Gaussian), suggesting that this
dependence may be universal. In fact, it would be interesting to prove this
result analytically using perturbation theory calculations. We remark here
that if the material is such that the major crack dominates all others then
the above result allows us to evaluate the fracture energy (and thus fracture
toughness) as a function of the width distribution. Of course, for many
materials, other processes off the crack path may consume a significant
amount of energy, in which case this conclusion does not apply. We have
also confirmed the fractal nature of the fracture path near criticality which
was previously suggested by several authors. However, even though many
numerical studies have confirmed fractality, it is still an open question from
the mathematical point of view, ie., a rigorous proof of the fact that
the dimension of the path is strictly greater than unity has not been found
yet (see note added in proof).

In Section I1, we describe our two-dimensional fracture model in
detail. In Section III, we determine critical parameters for semi-directed
Bernoulli percolation. In Section [V, we quantitatively characterize the
optimal fracture paths by calculating fluctuation exponents. Finally, in
Section V, we make concluding remarks.
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iI. MATHEMATICAL MODEL

As a simple model example we consider a long plate of height L under
a horizontal load (see Fig. la). Since information from an image of a
material is most commonly stored in digitized form, it is convenient to use
graph representations of the images./'*’ Therefore, we consider a part of the
two-dimensional square lattice confined between two horizontal parallel
lines a distance L apart (see Fig. 1b). The lattice spacing is assumed to be
unity and to each edge (bond) e of the lattice a random number y(e¢) is
assigned. This represents a discretization of the continuous random field
y(x) of the local specific fracture energy. Similar models of random graphs
on two-dimensional planes were studied by D. Jeulin.'> Note that the
square symmetry of the lattice is chosen just to fix ideas. One can also
study various types of periodic lattices (honeycomb and triangular) as well
as random Poissonian mosaics. We emphasize that our lattice spacing is
not representative of interatomic distances but rather represents the typical
scale of inhomogeneities or variations of the random field y(x).

- —_—
- L —_—
D —_—
(@)
?

v(e) specific
fracture ——

energy
for bond e
(b)
Fig. 1. Diagram of the system under study. (a) The system is under a horizontal load, and

the crack it taken to propagate from the center of the top, to the bottom, breaking it into two
pieces. (b) Lattice model of system.
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We assume that our plate is a brittle random material. Let G(x, y) be
the energy release rate (stored elastic energy released in the loaded
specimen). We consider the possible fracture paths 71(L) which start at
upper edge of plate and end at the lower edge of the plate, i.e. only those
paths which actually break our specimen into two pieces. It follows from
Griffith’s criterion that a crack will grow if the energy release rate is greater
than the energy to create a surface. For a lattice model, the means that for
each bond ¢ from the path 7I(L)

2y(e) < G(e), eell(L) (H

(see ref. 20 and references therein). Relation (1) assures that there is suf-
ficient amount of potential energy released to compensate for the energy
required for the formation of new surfaces (two surfaces). The energy
release rate G(x, y) depends on the loading conditions and the stress strain
relationship. Let us introduce the upper and lower bounds of the function
G(x, y) (or its discretization G(e)):

G_<Glx, y)<G, (2)

for all x and y.
We first consider the quasi-static case when y,,.,, = max y(e) among all
bonds e satisfies the following condition:

Zymax<G— (3)

There are many paths which join the upper and lower edges of our plate.
Our main objective is to find the fracture path (first crack which traverses
the plate) and describe statistically its characteristics such as roughness,
length, etc. We call this the optimal fracture path or OFP. In the case where
Eq. (3) is valid, the OFP is entirely determined by the minimum energy
consumption criterion, i.c. the OFP which starts at a fixed point 4 =(x, L)
on the upper edge y = L and goes all the way down to the lower edge y =0
minimizes the total fracture /(L) energy along the path among all paths
which join the point B and the lower edge. Here 7'(L) is defined by

L= Y e 4)

eell(x, y)

The initial point A4 in a real physical problem can be prescribed by applying
a point force at a particular point or by considering crack initiation from
a small notch made on the upper edge, as is usually done in the experimen-
tal determination of the fracture toughness,®!) (see Fig. la).
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We emphasize that the endpoint of the path is not prescribed in our
formulation; the path itself chooses it by minimizing I (L). We note that in
ref. 12 both ends (source and destination) of the minimizing path are
prescribed. We also note that minimal surfaces in 3-D were examined by
Alava and Duxbury in the context of Ising models of magnets.??

In the work of Jeulin!?) the choice of the optimal path between two
prescribed points (source and destination) was also solely determined by
the minimum cnergy consumption criterion. This was motivated by con-
sidering the situation where the scale of variation of the stored energy field
G(x, y) is much larger than the scale of variation of the field y(x, y). This
implies that variations in G(x, y) can be disregarded, i..,

G(x, y)= Gy = const (5)

where G, should be viewed as an average (homogenized) value for the field
G(x, y).

We remark here that condition (5) is not necessarily sufficient for
using the minimum energy consumption criterion only. Indeed, if relation
(3) is not satisfied:

G_ <2Ypmax (6)

then the path /I(L) which minimizes the total fracture energy I” may
violate Eq. (1) for some edge ¢’. We treat this situation by introducing, in
addition to the energy minimization criterion, a so-called cost test proce-
dure for a constant field G, such that inequality (6) holds. This cost
criterion accounts for unbreakable bonds: a physically realistic situation.
Having chosen the path [1,(L) which minimizes the total fracture energy
we check if

2p(e) < G, eelly(L) (7)

If Eq. (7) is satisfied, then we are finished and [1(L} is the OFP that we
seek. Otherwise we pick the next path /7,(L) which minimizes total energy
consumption among all other paths (joining the given point and plane) but
IT,(L). Then we make the cost test (7) for the path /1,(L) and so on. We
stop when (7) is satisfied. Unfortunately, this procedure is very expensive
computationally. In order to study this effect within the framework of the
minimum path algorithm, we choose to set some upper limit on the bond
strength, after which the bond becomes “unbreakable,” and the path is
forced to avoid those bonds. For distributions which have a wide range of
bond strengths, this will approximate Griffith’s criteria reasonably well. At
first glance, it appears that the cost test would allow one to incorporate
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Fig. 2. Sample crack path. Note that the endpoint on the bottom is not fixed, but it
determined from the minimum energy path.

variations of the stored energy G(x, y). However, G(x, p) is usually a func-
tion of the current level of damage and therefore it is time dependent.
Incorporation of the time dependence in an numerical algorithm would be
a possible extension of our work.

We use mathematical ideas and results from first-passage percolation
in the study of the fracture of brittle solids for two-dimensional materials.
This includes the use of the wandering exponent { [ defined by (16)], which
characterizes the transversal deviation (roughness) of the fracture path (see
Fig. 2) and the exponent y [defined by (17)], which characterizes the fluc-
tuations of the energy consumed by the path which fractures the specimen
into two pieces. For our fracture model, we consider the exponents { and
x in the semi-directed sense (north, east or west orientation) since this
reflects the fact that the fracture path does not like to reverse itself as
observed by Jeulin.'>’ We have already noted that such exponents have
arisen in variety of physical model'*'® and have been shown to be univer-
sal for different types of lattice orientations.”® We note here that the
exponents { and y should not be viewed as critical in the sense that they
were obtained under conditions specified in Eq. (10) below [compare to
Eq. (11)].

In addition to the usual Bernoulli percolation lattice models, one can
treat percolation on a square lattice with orientation in either a directed
sense (north-cast orientation) or a semi-directed sense (north, east or west
orientation). The bonds (or sites) in the lattice are chosen to be occupied
with some random probability p as in standard percolation, but clusters
can only be formed by moving from bond to bond in one of the possible
oriented directions. Because of this constraint, it becomes more difficult for
an infinite cluster to form. As a consequence the percolation threshold for
oriented Bernoulli percolation shifts upward from the usual value p,,
depending on the type of orientation, according to the inequalities

sdir

pe<pit<pd (8)
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where ps% and pd denote the thresholds for the semi-directed and directed
cases, respectively. Similarly, the correlation length exponent v, which
characterizes the length scale of finite clusters in the system when it
approaches the threshold from below [behaving as (p.— p)~"], satis-
fies the following inequalities for the aforementioned three types of
orientations:

v < vsdir < vdir (9)

We note here that v for directed and semi-directed percolation is not
isotropic but is a function of the direction in which it is measured. In this
paper, we will always refer to v for directed and semi-directed percolation
in the direction of “propagation” (north for the former and north-east for
the latter) and thus Eq. (9) applies only to such cases. One of the most
striking features of critical phenomenon is the universality of the exponents.
In particular, this means that v, for a particular orientation, is independent
of the lattice symmetry (e.g., its numerical value is the same for square,
triangular, honeycomb and other lattices) and changes only with dimen-
sionality of the system,

Although values of the percolation threshold and correlation length
exponent are well established for usual percolation (see ref. 10 and references
therein) and have been obtained more recently for directed percolation,!® 2
very little is known about the critical parameters for semi-directed percola-
tion. In the next section, we will determine these critical properties in the
semi-directed case. Subsequently, we will ascertain whether the exponents
{ and y remain universal in the vicinity of the semi-directed Bernoulli per-
colation threshold p3dir,

We will also study numerically several issues which raise theoretical
questions to be addressed in future mathematical studies of first-passage
percolation and related topics. One such question is that of the fractal
dimension of the OFP at criticality. An important mathematical condition
under which most statements in the first-passage percolation are proven is
non-percolation of zeros. This means that if y(e) are identically distributed
random variables (i.i.d’s) taking values say in the interval (0, 1), then

Plyle)=0) < p,, (10)

where P stands for the probability and p. refers to the percolation
threshold of zeros. For a simple binary model with values O (pores) or 1
(solid), this, roughly speaking, means that the specimen is not broken. It
was shown in ref. 9 that under this condition (and some other technical
condition on the second moments), the length of the first-passage path
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between the two points a distance L apart scales as L for large L. By means
of numerical simulations, we show in this work that at criticality, i.e., when

P(y(e)=0)=p,, (11)

the path scales as L* with | <a <2, ie., the OFP becomes fractal for
point-to-plane first-passage percolation. In fact the situation corresponding
to Eq. (11) makes sense physically. Indeed, since according to well-known
results in two dimensions the zero energy path does not exist with positive
probability (sec ref. 25 and references therein) which is equal to 1/2 for the
square lattice (also, there is no infinite cluster at criticality) and therefore
the specimen is not quite broken with significant probability. We remark
here that fractal dimension of various paths at criticality was reported in
many studies. In this sense our result is not at all surprising but rather
consistent with previous work. However, it is a challenging problem to
find analytically nontrivial upper and lower bounds for a or even prove
rigorously that 0 <« <1 (see note added in proof).

When a major crack fractures a specimen into two pieces, one can
observe two limiting scenarios. First, during the process of formation of
this major crack, there may be instances in which many other processes off
the crack path are also formed. In this case, the fracture energy differs
significantly from the energy consumed by the major crack. Another
limiting case is when the major crack dominates and off-path processes
consume a negligible amount of energy. The realization of these limiting
scenarios depend on material properties and the distribution of the
inhomogeneities. For the class of materials in which the second scenario
applies, we will answer a basic question: how does the fracture energy
(simply related to the fracture toughness®’) depend on the degree of
inhomogeneity of the specimen?

Hl. DETERMINATION OF CRITICAL PARAMETERS FOR
SEMI-DIRECTED BERNOULLI PERCOLATION

We consider a model of semi-directed Bernoulli percolation in which
the bond strengths are zero or unity and determine the critical parameters
p. and v, which strictly speaking are defined for infinite systems. In order
to determine them via simulations of finite systems, we must first under-
stand how these quantities behave as a function of system size. Perhaps the
most straightforward way to measure v for a finite size system is to measure
the width 4(L) of the percolation transition for a system of linear size L.
This percolation transition is defined by plotting the percolation proba-
bility P(p, L) as a function of the bond occupation probability p for a
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given L. This resulting curve is roughly sigmoidal in shape, but the rise in
the curve from 0 to | is not discontinuous. Instead, it is a smooth transition
which occurs over some with A4(L). For a reasonable definition of the
transition width (see, for example ref. 10), 4(L) should scale as

A(L) oc L™ (12)

We will define more precisely how we choose to define our transition width
below in Eq. (15).

For a finite sized system of size L, one can define an effective percola-
tion threshold p(L) as the occupation probability at which some fraction
(typically 1/2) of the systems contain clusters which span the entire length
of the system. As L — oo, pS(L)— p.. One can extract p<"(L) for a given
L from the plot of the percolation probability P(p, L) by fitting some
smooth curve through the points at determining at what point 1/2 (or
some other fraction) of the samples percolate, i.e., p(L) is the value of p
such that

P(p(L), L)=1/2 (13)

Once these values have been calculated we can take advantage of another
scaling relation® which states

P(L)—p, oc L™ (14)

using the value of v calculated previously. A plot of the probability p<™(L)
vs. L= will result in a graph which intersects the vertical (p®T(L)) axis
(where L =0) at p,.

Our estimations of p, and v for our binary semi-directed Bernoulli per-
colation model were done via finite size scaling using lattices of size L,
where 200 < L <£2000. We found there were significant finite-size effects for
L <200 (i.e in these cases the values of L were small enough that the
asymptotic scaling laws did not describe the behavior completely). Our
values of 4(L) and p(L) were extracted by fitting each curve to a function
of the form

_lterfl(p— (L)) A(L)]

P(p, L) 5

(15)

An example of such a fit for L =1500 is shown in Fig. 3. This curve could
also have been fit to similar functions, such as the hyperbolic tangent. We
chose the error function because the resulting plot more closely fit the error
function, but using the hyperbolic tangent to obtain A(L) and p¢T(L) did
not change the results significantly, especially in the case of p*(L).
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Fig. 3. Example of the determination of p"(L) and A(L) for L = 1500 for the semi-directed
binary model. The fitting function is defined in Eq. (15).

The resulting plot of A(L)~" vs. L is shown in Fig. 4. (Lattices with
larger values of L were not used because their width was more difficult
to ascertain due to the sharpness of the transition.) The slope of the line
is 0.665 +0.002, which corresponds to a value of v**"=1.50+0.01. Our
numerics suggests that v*4" is exactly the simple fraction 3/2, which lies

® simulation data
0,685

AL’

100

100 1000
L

Fig. 4. A plot of the scaling of the inverse transition width 4(L) ' as a function of L for the
semi-directed binary model. The circles are the simulation data while the line represents a best
fit power-law. The power law has an exponent of 0.665 +0.002, which is very close to 2/3.
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between the corresponding known values (described below) for usual and
directed Bernoulli percolation.

Why should the value of v*I" lic in between the values of v and v'* in
two dimensions? Indeed, this is consistent with other known percolation
results. For example, for usual Bernoulli percolation,“o’ we have that
v=4/3 for two-dimensional systems and v=0.88 for three-dimensional
systems. Thus, we conclude that adding the degrees of freedom may lead to
a decrease in the numerical value of the correlation length exponent (at
least below the upper critical dimension). Recall that the correlation length
behaves as (p — p,)" as p approaches p,. Since p is the fraction of occupied
bonds, adding degrees of freedom (e.g., relaxing the orientational con-
straints or moving to a higher dimension) means that the contribution
from each bond becomes less significant. Therefore, it is natural to expect
that the value of v decreases when the degrees of freedom increase.

Using our evaluation of v for the semi-directed case, we can now plot
pe"(L)y vs. L™'". Fig. 5 shows that if we fit this to a straight line and
extrapolate to L = oo, we get a value of 0.5475 4+ 0.0025 for pi¥". As we can
see from the figure, the difference between the value of p*¥* and the values
of p¢™(L) for finite L is significant, and the extrapolation is required to get
an accurate answer. It is useful to compare our new results for semi-
directed percolation to those of standard percolation,''” where p,. = 0.5 and
y=4/3, and for directed percolation,'®?% where pd"=0.6447,2% ydr=
26/15. The determination that v¥" =26/15 is based on numerics.
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Fig. 5. A plot of p™ vs. L' for the semi-directed binary model. The circles are the simula-
tion data, while the dashed line is a best fit line to the data. It intersects the y-axis at
0.5475 + 0.0025, which represents the value of p, for the infinite system.
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IV. OPTIMAL FRACTURE PATH (OFP) STATISTICS FOR
POINT-TO-PLANE CRACKS

The wandering exponent ¢ is defined as the exponent which controls
how the “width” w(L) of the crack (as defined below) scales as a function
of system size L, i.e.,

w(L) oc L* (16)

In this paper, the width was defined in three different ways, as discussed
below. The energy fluctuation exponent y is simply defined as

AE(L) oc L¥ (17)

where AE is the standard deviation of the distribution of crack energies
for a given L. To test our numerical code, we first evaluate the known
exponents { and y in the semi-directed model away from criticality (for dif-
ferent lattices). We then determine them in the vicinity of the percolation
threshold.

We measured values of { and y by scaling the width and energy fluc-
tuations, respectively, as a function of system size L. This was done by
assigning random breaking energies to the nearest-neighbor bonds of an 4L
(x-direction) by L (y-direction) square lattice based on three given dis-
tribution described below. Then, the path between the point (2L, L) and
the edge y =0 which contained the smallest total sum of bond strengths
was determined using Dijkstra’s algorithm.®® This algorithm is an iterative
one in which one starts at a specific site, and then at every step the next
“closest” site to the original one (in terms of the given metric) is deter-
mined. The procedure is repeated until a site on the opposite edge is found.
The lattice was chosen to be four times larger in the x direction in order
to prevent the path from going outside the box in the horizontal direction.
For a few of the smaller L cases, the lattice was chosen to be eight times
larger in the x direction.

For each value of L, these minimum energy paths were determined
for a large number of samples, ranging from 10° for L =10 to 1000 for
L =224, For each sample, we found the average total energy and length of
each path. We also found the average “width,” with the width defined in
three ways. The first way was the “start-stop” width which represented the
x displacement between the beginning and end point. The second was the
maximum width, which is defined as the displacement between the maxi-
mum and minimum point on the path in the x direction. The final defini-
tion was simply the radius of gyration of the path in the x direction. As this
average weights all of the points on the path in a more equal manner than
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the first two, we found it to have the best scaling properties. Unless other-
wise specified, this is the definition of path width that is presented in the
results.

We have studied systems with three different bond distributions. The
first system contained bonds with a uniform distribution of strengths,
ranging from 0 to 100. The second system contained bond strengths which
were Gaussian distributed with a mean of 50 and a width of ¢ (the bonds
whose values were originally less than 0 were set equal to 0). The third dis-
tribution was started with a system of uniformly distributed bonds like the
first, but then a critical fraction (equal to 1 —0.5475 for our case of semi-
directed percolation) were set equal to zero. The fraction of occupied bonds
was therefore 0.5475, as determined previously.

One initial test of our systems was to check the universality of the
exponents ¢ and y for the OFP in our different systems. These studies were
done using only an energy minimization, and not taking into account
Griffith’s criterion. The results of these studies are plotted in Fig. 6 (mean-
square width) and Fig. 7 (energy fluctuations). The system with the
uniform distribution of bond strengths yielded results which are numeri-
cally identical to the known values { =2/3 and y = 1/3. In the case of the
bonds with a Gaussian distribution of strengths, the transverse width
measurements do not show a clear power law behavior for the sample sizes
used, but do seem to be asymptotically approaching a slope of 2/3 in the
log-log plot of width vs. L. The energy fluctuations for this sample still
showed a power law behavior corresponding to an exponent of y =1/3. We

100 T

o—a uniform
s — & critical
& - - 4 gaussian

mean—square width

10 100
L

Fig. 6. Plot of the crack mean-square width as a function of L for three cases. Although the
magnitudes are different, all show approximately the same exponent for large L.
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Fig. 7. Plot of the standard deviation in the distribution of fracture energies as a function of
L for three cases. The two non-critical cases give similar exponents of approximately 1/3,
while the critical case gives a significantly smaller value.

note that the values of { and y are the same not only for different lattices
but also stay the same for random mosaics. Thus, our simulations
produced exponent values which are consistent with previous studies on
directed polymers,''® solid-on-solid model,"'® and the fuse and elastic-
perfect-plastic models,''” and hence validated our numerical technique.
The case of the nearly critical sample is an interesting one. Because of
all of the zero strength bonds, this sample could be thought of physically
as being practically broken, and held together by only a few bonds (“very
spongy” specimen). In this case, { is still close to 2/3 (although for small
values of L there is some deviation from power-law behavior), but y
becomes approximately 0.17, which is about half of what it was for the
non-critical case. Thus we see that the well known scaling relation
x=2(—1 (see e.g., ref. 27 and references therein), which holds under condi-
tion Eq. (10), is no longer true. In fact, it is easy to see that a simple
heuristic argument for the latter scaling relation based on the Pythagorean
theorem'?® applied to a right triangle with the hypotenuse L + L* and legs
L and L¢ does not work in the vicinity of the percolation threshold, which
supports our numerical results. Indeed, this heuristic picture assumes that
the boundary of the area wetted at time ¢ by the fluid, which is supplied
at the origin, roughly grows as a smooth surface perturbed by small oscilla-
tions. However, in the vicinity of the threshold, large clusters of zeros can
be added at once and therefore the latter assumption is no longer applicable.
With the values for the sample without the cost-test algorithm deter-
mined, we can now calculate similar quantities using the cost-test procedure
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described earlier. In this case, we will use the uniform distribution of bond
strengths, where the strengths vary between 0 and 100, but the path will
not be allowed to break any bond with a strength greater than 80. So, in
general, the path will contain lower energy bonds, but it will be longer
since it will have to avoid 20% of the bonds. In the simulation, if the
starting point was such that the crack was “trapped” by a system of
unbreakable bonds, that sample was rejected. The results for the width
change simulation are shown in Fig. 8 The slope for this graph is
approximately 0.66, but the values are slightly larger, due to the bonds
which must be avoided. The associated energy fluctuations also follow the
same trend, with the exponent being approximately 1/3, but the values
themselves are about 2% higher. Although this difference is small it occurs
for all values of L. Thus, we conclude that the cost test does not change the
qualitative picture but only changes the actual numbers.

In order to determine the fractal dimension of the path «, we plotted
the total path length vs. L for the same samples that were used in the study
of { and y. A log-log plot of these results are shown in Fig. 9. The line
fitted to the data shows a best fit power law that gives an exponent a =
1.03 +0.01, where o represents the fractal dimension of the path. This is very
close to 1, but different enough to suggest that the path may be fractal.

A final measurement is that of the dependence of the normalized
fracture energy E(L)/L of the OFP on the width of the distribution of the
specific energy of bond strengths. In other words, how does the degree of

mean-square width

1 .
10 100
L

Fig. 8. Plot of the crack mean-square width as function of sample size when the cost testing
is included. The slope is still approximately 2/3, but the values are higher due to the
“unbreakable” bonds.
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Fig. 9. Plot of the total path length as a function of L for the critically dilute case. The slope
of this line of 1.03 +£0.01 and represents the fractal dimension a of the path in this case.

inhomogeneity among the different bonds in the system affect the path
energy, if the type of distribution is the same. To test this, we used a Gaussian
distribution of bond strengths, centered at 50. As in the previous case, if a
negative bond strength was drawn from the distribution, it was set equal
to 0. For the distribution widths of interest, this happened very infrequently.
Fig. 10 shows the results of this simulation, which was performed on lattices

50.0 T T

48.0

46.0

ELYL

440 -

42,0

0.0 5.0 10.0 15.0 20.0
Distribution Width

Fig. 10. Plot of the total fracture path energy vs. distribution width. The dependence is roughly
quadratic for small values of distribution width.
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with L = 160. For each width, the energy given is the average over 1000 dif-
ferent configurations. From the graph, we see a dependence that is approx-
imately quadratic in nature for small values of the width. It would be
interesting to determine the precise theoretical dependence of the energy
decrease as a function of distribution width. The small width case is at least
conceivably within the reach of being proved rigorously using perturbation
theory considerations. For some restricted class of materials in which the
major crack dominates, these results can be used to determine the fracture
toughness which is related to the fracture energy in a simple way.?!

We also carried out similar measurements of the normalized energy of
the OFP versus the width of the distribution of bond strengths for uniform
distributions. Although the data for these simulations were more limited
in number, we again observed a quadratic dependence for small values of
width. In this case, the width was just simply the difference between the
two endpoints of the uniform distribution. This implies that the quadratic
behavior for small widths could be a universal phenomenon for a large
class of bond distributions.

V. CONCLUSIONS

We have interpreted the well-developed model of semi-directed first-
passage percolation and associated universal exponents { and y in the
context of the fracture two-dimensional brittle materials under quasi-static
loading. In particular, we studied the interplay between semi-directed first-
passage percolation model (also known in the statistical physics literature
as directed polymers) and semi-directed Bernoulli percolation by deter-
mining the exponents in the vicinity of the percolation threshold for the
semi-directed model. This study led to a number of new results. First, we
determined the critical parameters p and v*¥* for semi-directed Bernoulli
percolation. We found that the critical fraction of occupied bonds is p%* =
0.5475 (for a simple binary model) and our numerics suggest that correla-
tion length exponent v*¥* is exactly 3/2. We observed that this value lies
between the corresponding values for usual and directed Bernoulli percola-
tion. We also observed that the well-known scaling relation y=2{—1
between the wandering exponent { and energy fluctuation exponent y
breaks down in the vicinity of the percolation threshold and provide a
heuristic explanation for this behavior. This analysis of the crack statistics
was carried out for a wide variety of bond strength distributions, including
that of an almost critical distribution of zero-strength bonds.

For a restricted class of materials, we studied the dependence of the
fracture toughness on the width of the distribution (i.e., degree of inhomo-
geneity) of the specific fracture energy. This dependence was found to be
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quadratic for small widths and two different distributions (uniform and
Gaussian), suggesting that this dependence may be universal. We have also
measured the fractal dimension of the cracks for the almost critically
broken samples and have numerical evidence that they are fractal, which is
consistent with other fractal paths reported in many numerical studies.
Finally, we observe that taking into account Griffith’s criteria does not
change the scaling exponent but changes the constants.
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NOTE ADDED IN PROOF

After this paper was accepted for publication, we were made aware of
a preprint by Aizenman and Burchard. In this work, several interesting
results on critical behavior (including the fractal dimension of the shortest
path) have been rigorously proven.
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